
Through the Kaleidoscope: Enhancing Generalizability for Machine
Learning Approaches to Video Fingerprinting

Dakota Barnes and Nikolas Belle

Abstract

Video fingerprinting through the analysis of packet flow
characteristics represents a coveted milestone for network
engineers, while also posing an attractive target for cyber
adversaries. Whether the motivation to accomplish this
task has been driven by moral desires remains question-
able, but recent advancements in machine learning have
shed light on new potential fingerprinting approaches.
The paper “Beauty and the Burst: Remote Identification
of Encrypted Video Streams,” [5] argues how burst charac-
teristics are unique to streamed videos and that examining
the qualities of these bursts enables us to classify specific
videos streamed on platforms such as Youtube, Vimeo,
Netflix, and Amazon. According to the paper, since
packet burst information can be retrieved from videos
streamed in a network environment due to the current
MPEG-DASH standards, remote attackers can easily fin-
gerprint videos by training a machine learning model on
these characteristics. In their study, they train a convolu-
tional neural network (CNN) with burst-related features
from data collected from streaming various videos across
different platforms in a stable network environment. In
this paper, we attempt to recreate this study utilizing the
PINOT [1] infrastructure at the University of California,
Santa Barbara, through the platforms netUnicorn [2] and
Trustee [4]. Beyond this, we examine how the worrying
results of “Beauty and the Burst: Remote Identification of
Encrypted Video Streams” [5] might provide false hopes
for potential attackers. The paper predicts that the model
could struggle to generalize due to encoding mismatches
between the streams the model was trained on and the
streams the victim is accessing. In adaptive streaming,
for example, the encoding changes dynamically as net-
work conditions change. In an attempt to support this
prediction, we experiment with a CNN trained on data
gathered from different nodes provided to us through the
PINOT [1] infrastructure and observe how the accuracy
of the model changes when trained and tested on data
collected from different network environments. Ensur-
ing generalizability is incredibly important in machine
learning as high F1 scores can provide false trust in a
model that overfits to the data it was trained on. Despite
the incredible potential, the networking industry has been

cautious to accept machine learning solutions to learning
problems in this domain due to the low threshold for fail-
ure. Solutions must be robust and generalizable, which
are requirements that many proposed machine learning
models fail to meet in the aspect of networking, despite
having high F1 scores.

1 Introduction
The problem we are targeting in this paper is the sugges-
tion that the classifier produced in “Beauty and the Burst:
Remote Identification of Encrypted Video Streams” [5]
may not generalize to different network environments.
Examining the potential shortcomings of this model is
important to the networking community because high
F1 scores enable false trust in solutions that cannot be
universally applied.

Looking at the paper, the primary problem we observe
is that while the features of burst characteristics they chose
to train the model on may be unique to every video on
a streaming platform, they are also unique to network
environments. Bit rate, for example, will not appear the
same for a single video that is streamed using a university
network infrastructure when compared to a cloud infras-
tructure like AWS or Azure. This is due to user capacity,
congestion control, and frequency of traffic which varies
across different environments and at different times of
day.

In this paper, we show that while a fingerprinting model
with high accuracy can be produced, it is important to an-
alyze the decisions made by a black box model, like a
CNN, to ensure the model is not overfitting to the data it
is trained on. To do this, we use Trustee [4] as a post-hoc
model interpretation tool. After reproducing the experi-
ment detailed in the paper with relatively high accuracy,
we analyze the decisions made by the model to predict
whether it can be generalized to different network condi-
tions. With this intuition, we retrain the model on data
gathered from various environments, with the help of
PINOT [1] and netUnicorn [2], and observe how the accu-
racy of the model changes, with hopes of less overfitting.

In this paper, we will begin by providing background
information on the infrastructures and tools we utilize to
conduct our experiments. Then, we will outline our initial
technical approach to the learning problem we aim to



Figure 1: Current Machine Learning Pipeline [3]

Figure 2: Closed-loop Machine Learning Pipeline [3]

address. After this, we discuss the iterative trial and error
process we went through to produce better results with
higher generalizability throughout the implementation
of our plan. Finally, we will analyze the results of our
experiments in relation to our learning problem.

2 Background and Motivation
Before exploring our learning problem, it is important to
start from the beginning. Despite the incredible develop-
ments in the past years, machine learning has struggled
to become a reliable method of addressing learning prob-
lems in the networking community. A variety of factors
play a role in this, including the inability to easily aug-
ment data due to many packet contents and flow statistics
being interdependent, shortcuts being easily found by the
model, under-specification issues, and most importantly
the difficulty of gathering diverse data that can be used to
train a model with the ability to generalize.

2.1 Closed Loop Machine Learning
The current machine learning pipeline shown in Figure 1
involves the steps of data preparation and model selection,
training, evaluation, and deployment.

While measurements such as accuracy and recall evalu-
ate the model’s performance, little can be done to analyze
how a model makes its decisions when its complexity in-
creases. Models with high explainability, such as decision
trees, allow you to see decision rules that can highlight
potential shortcuts the model makes, but black box mod-
els, such as random forests and neural networks, don’t
allow for any decision-making evaluation. To address
circumstances of shortcut learning, under-specification,
and spurious correlations which lead to models with high
training accuracy but low ability to generalize to unseen
data, it is necessary to adopt a closed-loop machine learn-
ing pipeline [3].

The closed-loop pipeline [3] displayed in Figure 2 in-
cludes the additional steps of explaining and analyzing a
model to address overfitting issues and recollecting data
to account for these issues. This loop is repeated until a
model is obtained with high accuracy and the ability to

generalize. To help close this loop, we utilized the tools
PINOT [1], netUnicorn [2], and Trustee [4].

2.2 PINOT
PINOT [1] is a “programmable infrastructure for AI/ML
for Networking (NetAI) research that enables network
measurements from real-world infrastructure to create
trustworthy data-based solutions” [1]. Making use of this
infrastructure at the University of California, Santa Bar-
bara, we were able to select from a collection of Raspberry
Pi nodes spread across different locations on the university
campus and in Isla Vista and send network traffic to these
specific nodes. Since these nodes are connected to the
public infrastructures in their respective locations, we can
imitate a typical user and collect data that is representative
of diverse network conditions.

2.3 NetUnicorn
To target these nodes and send network traffic to them,
which in the case of our paper is streaming Vimeo videos,
we made use of the powerful data collection platform, ne-
tUnicorn [2]. NetUnicorn [2] allows a user to set up data
collection pipelines targeting specific nodes in a virtual
or a physical infrastructure such as PINOT [1] and run ex-
periments that iteratively collect network data from these
pipelines. Pipelines are broken down into tasks, which in
our case was watching specified Vimeo videos for 60 sec-
onds each, which can be directed towards the Raspberry
Pi nodes of our choosing to provide us with data from the
same set of tasks collected in different environments. This
emulated the changes in network conditions in different
locations and at different times of day.

2.4 Trustee
Once training a model on the data collected through ne-
tUnicorn [2], it is essential to close the loop and ana-
lyze the decision-making process. To do this, we utilize
Trustee [4], which extracts a decision tree explanation
from the otherwise black box model we employ. The
platform takes a training dataset and existing machine
learning model as input and creates a “high-fidelity, easy-
to-interpret decision tree and associated trust report as
output” [4]. Implementing Trustee [4], we can trace the
decision-making process of our black box model and
theorize on if these decisions will generalize to data col-
lected in other environments. With this intuition, we
can easily rerun the data collection process using netU-
nicorn [2], with the potential modifications of targeting
different nodes, altering the streaming time window, and
types of videos streamed. We can also adapt our data
pre-processing stage to the explanation of the decision
tree and format the data differently or extract different
features.

2



By utilizing the tools PINOT [1], netUnicorn [2], and
Trustee [4], we hope to pinpoint areas where a relatively
high-performing black box model might not generalize
to potentially volatile network environments. From there
we look toward how the data collection efforts and pre-
processing stages can be modified to account for these
changes across environments, closing the loop in the ma-
chine learning pipeline.

3 Technical Approach
Our initial approach was to try and replicate the technical
approach in “Beauty and the Burst” [5] but on a much
smaller scale. We initially were going to conduct our
experiment using 10 YouTube videos, across 5 different
Raspberry Pi nodes, to get a total of 50 video watches. We
planned to capture the bits per second (BPS) up/down/all,
packets per second (PPS) up/down/all, and packet length
(PLEN) up/down/all. Then, we were going to try and copy
the custom Convolutional Neural Network they created
and see how our model accuracy compared to theirs, given
that we were using multiple nodes to train our model
versus the single node they used to train their model. We,
however, severely underestimated what data we needed
to collect to train a well performing model.

Once we started working on the data collection and
preprocessing, we realized that we would need much more
data. Additionally, we realized that it would be difficult
to compare the accuracy of multiple nodes versus the
“Beauty and the Burst” [5] paper’s single node accuracy,
especially if our accuracy was not close to their 99%.

Our experiment led us to two different types of captures.
We represented the multiple node collection in Capture 4
which was 50 random nodes, for 5 Vimeo videos, with 60
seconds in streaming, giving us 250 total packet captures.
We then represented a single node collection in Capture 6
which was 1 single node, for 5 Vimeo videos, with 60
seconds of streaming, giving us 250 packet captures.

We preprocessed the data with the same
pcap to dataframe function, however, the single-
node model was left with only 178/250 streams, and the
multi-node model was left with 217 streams after data
processing and normalization. We used graphs to display
the down bps for each video, with the same videos
stacked on top of each other.

The plot for the 0.25-second intervals (interval 0.25
branch in the GitHub repository) can highlight the differ-
ence in streams between the videos much more visually
than the (interval 5 branch in the GitHub repository, also
in main branch). Additionally, we included the raw data
then after processing, to show how we normalized the
packet captures.

We ended up having two methods of storing our data,
one for each model type. The concat datatype was each
video data frame after the .concat operation, which stacks

Figure 3: Down bps for Single Node in 5 Second Intervals

Figure 4: Down bps for Single Node in 0.25 Second Intervals

the data frames vertically. This data frame is used for
the Random Forest Classifier, and the drawback is that it
does not see time as a series, but as a feature. The second
method was the numpy array, which was used for the
Convolution Neural Network. Each stream was stored as
a time series, where each interval had 6 features.

The main purpose of the concat method was for explain-
ability because the numpy array could not be fed into the
trustee [4]. Using the Random Forest Classifier for each
interval separately, we found the time frame where the
model could make the most accurate prediction and ran
the trustee [4] on that time frame.

4 Implementation and Evaluation

4.1 Pipeline
The first step in the implementation process was creating
a netUnicron [2] pipeline to collect the streaming data
necessary to run our experiment. We found the most
efficient way to do this was to create a dictionary at the
beginning of the program, defining the video label to the
link. Then, have a parameterized netUnicorn [2] pipeline
with only around 10 lines of code, that could capture any
number of videos, through any number of nodes, for any
amount of time repeated any amount of time per node.
The pipeline also makes sure to include the video label

3



Figure 5: Down bps for 20 Nodes in 0.25 Second Intervals

in the saved packet capture files, to be extracted in the
preprocessing step.

4.2 Data Collection
All of our packet captures we ran through netUnicorn [2]
are labeled in dictionaries at the top of both files, with de-
scriptions about the pipeline. We initially thought we were
only going to need 10 YouTube videos, streamed through
10 nodes, for thirty seconds. This was labeled capture 0,
and it had many problems. The first was that some of the
videos we used were not even a full 60 seconds in time.
Additionally, when we tried comparing video streams,
they had no visual correlation to each other. Our first
hypothesis was that the initial buffering of the YouTube
video was lasting a large portion of the capture time and
that ads from YouTube might be playing and messing
up the packet capture data. To combat this, we believed
we needed more data, which led to Capture 2 for 10 new
YouTube videos, all above 5 minutes in length, through 50
nodes, and for a packet capture time of 300 seconds. The
“Beauty and the Burst” [5] paper had YouTube packet
captures for 4.5 minutes and cropped the streams to 3
minutes long. However, 50 nodes was slightly too much
for the UCSB PINOT [1] infrastructure, and the videos
we did capture did not have much correlation. This led
us to switch gears from YouTube to Vimeo. The “Beauty
and the Burst” [5] paper stated that they only needed to
take 60 seconds from Vimeo for an accurate classifier,
so we chose 5 new Vimeo videos and targeted 20 nodes.
The resulting packet captures finally had data that was
correlated enough to be seen by the human eye on a time
graph, so we decided to pursue Vimeo and use 5 videos.

Then we realized that with the amount of data, our time
restrictions, and our model complexity, our results were
not going to be in the 99.9% accuracy region that the
paper had, so we needed to determine a way to compare
our results to theirs. This is what led to packet capture 8,
and the concept idea behind our paper. Capture 8 used
the same 5 Vimeo videos, and instead of multiple nodes,
we streamed every single video from the same node, 50

times. Capture 8 represented how the “Beauty and the
Burst” [5] collected their packet captures, because they
only used one computer “node” to collect their data for
the model.

4.3 Data Processing
To begin, each of the packet captures for a stream were
placed on our snl-server, with the video number in the
file name. We then created a function that would save the
label name from the file path, iterate through each PCAP,
and extract features using the Scapy function call. The
features we chose were bps up/down, pps up/down, and
plen up/down. Additionally, to remove some of the empty
packets at the beginning of the stream, we started the time
aggregation from the first packet capture that contained
any of our feature data and cropped all the packet captures
at 55 seconds. Once the packets were parsed, we decided
to remove all of the empty captures, captures with less
than 60 seconds of data, and captures that were missing
features.

One of the most important parts of this preprocessing
function is the interval variable, which is used to deter-
mine the time aggregation for the video. The problem
is that we had three levels of features (each video, each
time aggregation, and each feature), that we somehow
had to fit into a two-level data frame. Our first solution
was to try and place arrays in each cell of the data frame,
however, the only way to do so would be to take the mean
of all the features or choose one feature. This way each
video stream would be a row in a large data frame, with
the time interval as columns. However, we lost almost all
of the critical feature information with this method. We
then experimented with the dataframe.concat() function,
which essentially could stack data frames vertically. This
method had the potential to represent all of our three lev-
els of features, but there was a cost. Each video stream
was created into its own data frame with column features
(bbs, pps, plen), and time aggregation as the rows, then
each video data frame was stacked vertically. The prob-
lem with the .concat() function was that our data frame
could no longer see relationships over time, and could
only compare specific intervals of time. We had some
success with the .concat() function, but still, we wanted
to dive deeper.

Our research led us to numpy arrays, which could repre-
sent more than just two-dimensional data like the pandas
data frames. With the numpy arrays, we could now rep-
resent each individual video stream as a time series, and
each time interval had the corresponding 6 features.

4.4 Model Selection
Our first goal was to place our data into a simple classifier
so that we could get a baseline of how useful our data
was. Our model of choice was the Sklearn Random Forest

4



Classifier. Initially, we had our data aggregated into .25-
second intervals, as the paper “Beauty and the Burst” did.
However, with the concat() function, we realized that the
time aggregations had to be much bigger for the model to
have any success, because the timestamp was only used
as a feature and was not looked at as a time series.

With the concat data frames and the 5-second aggrega-
tions, our model achieved 64% accuracy, which initially
does not look very impressive. However, this 64% means
that given any 5-second packet capture of the YouTube
video, it could classify the video with 64% accuracy. We
were testing our models with only the multi-node stream
packet captures, which we suspected were going to be
worse than the “Beauty and the Burst” [5] single-node
collection, but we did not know by how much. This is
the point in time where we created capture 8, which repli-
cated the one-node setup of “Beauty and the Burst” [5].
When we ran capture 8 through the Random Forest Clas-
sifier, it obtained 68%. This was great because our predic-
tion about multi-node vs single-node seemed to be correct,
but also made us realize we had to figure out how to get
our 68% accuracy to a point where it is comparable with
the paper’s 99% accuracy.

The time series issue became prevalent once again,
and we decided to test the custom Convolutional Neural
Networks from Keras. Our next big jump came from
the realization of our ability to convert our data to numpy
arrays as a time series. With our simple CNN, we obtained
90.9% test accuracy for the multi-node dataset, and 94%
test accuracy for the single node dataset. Multi-node
accuracy once again suffered in accuracy compared to
single-node, which the “Beauty and the Burst” [5] paper
created the model on, supporting our initial prediction.
We felt confident with our results, but we still had one
problem, which was explainability.

Unfortunately, Trustee [4] could not run on our mul-
tidimensional data from the Neural Network, so we ran
Trustee [4] on the RandomForestClassifier. However,
looking at the results, it felt wrong that the Trustee [4]
decision tree represented every single time interval with
only one decision tree. This forced us to get creative,
and we asked the question: Which time interval has the
highest chance of being classified correctly?

To answer this, we ran the classifier on each individual
time period and found surprising results.

From the 0-15 second interval, the classification accu-
racy was in the 20%-40% range. Even more interestingly,
for the multi-node and single-node dataset, the 45-50 sec-
ond interval was where classification accuracy peaked
at above 90%. This was great, but there was even more.
For both the single node and multi-node Random Clas-
sifier 45-50 second time frame, the accuracy was within
0.01% of the overall accuracy of the corresponding CNN.
Therefore, we were able to run Trustee [4] on the Random

Figure 6: Random Forest Classifier Individual Time Frame
Accuracy Report for Single Node Data

Figure 7: Random Forest Classifier Individual Time Frame
Accuracy Report for Multiple Node Data

5



Figure 8: Trustee [4] Decision Tree for Single Node Random
Forest Classifier on 45-50 Second Time Frame

Figure 9: Trustee [4] Decision Tree for Multiple Node Random
Forest Classifier on 45-50 Second Time Frame

Classifier 45-50 second time frame and see the choices
that the model made. Most of the tree decisions were
based on down bps, and down plen.

Trustee [4] was able to trace decisions that we believe
were similar to what the neural network had learned. After
reviewing them, it was clear that our single node dataset
led to tighter decision boundaries than the multi node
dataset, which leads to a model that is less generalizable
to varying network conditions. Additionally, we could
confirm that the black box model did not learn shortcuts
in the training process.

5 Conclusion
When analyzing the results of our experiments, we see a
series of learning points and stages that guided us towards
creating a model that was not only comparable to the
paper “Beauty and the Burst,” [5] but also supported our
hypothesis. Through a series of trial and error and recon-
figuring our data collection strategy, data pre-processing
steps, and model design, we were able to capture data that

supported our claim that a model trained in one network
environment would be very heavily susceptible to overfit-
ting. Diverse network conditions are required in the data
collection phase to train a model that is generalizable and
can be adapted by other users. Beyond this, we empha-
sized the importance of utilizing a closed-loop machine
learning pipeline when addressing learning problems in
the network community as well as the overall field of
technology.

References
[1] BELTIUKOV, R., CHANDRASEKARAN, S., GUPTA, A.,

AND WILLINGER, W. Pinot: Programmable infrastructure
for networking. In Applied Networking Research Work-
shop (ANRW ’23) (New York, NY, USA, 2023), ACM, p. 3.
(Cited on pages 1, 2, 3 and 4.)

[2] BELTIUKOV, R., GUO, W., GUPTA, A., AND WILLINGER,
W. In search of netunicorn: A data-collection platform
to develop generalizable ml models for network security
problems. In Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS

’23) (New York, NY, USA, 2023), ACM, p. 15. (Cited on
pages 1, 2, 3 and 4.)

[3] GUPTA, A. Lecture 1: Machine learning for networking.
Lecture presented in CS 190N, 2023. (Cited on page 2.)

[4] JACOBS, A. S., BELTIUKOV, R., WILLINGER, W., FER-
REIRA, R. A., GUPTA, A., AND GRANVILLE, L. Z. Ai/ml
and network security: The emperor has no clothes. In
Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security (New York, NY, USA,
2022), CCS ’22, Association for Computing Machinery.
(Cited on pages 1, 2, 3, 5 and 6.)

[5] SCHUSTER, R., SHMATIKOV, V., AND TROMER, E.
Beauty and the burst: Remote identification of encrypted
video streams. 1357–1374. (Cited on pages 1, 3, 4, 5
and 6.)

A GitHub Repository
Access to the GitHub Repository with steps and documentation
to recreate our experiments will be publicly available for use at
the link mentioned above.

6

https://github.com/dakotazoid56/Encrypted-Video-FingerPrinting

	Introduction
	Background and Motivation
	 Closed Loop Machine Learning
	PINOT
	NetUnicorn
	Trustee

	Technical Approach
	Implementation and Evaluation
	Pipeline
	Data Collection
	Data Processing
	Model Selection

	Conclusion
	GitHub Repository

