GAUCHOSAT: IN-ORBIT SOLAR CELL PERFORMANCE
TESTING

Dakota Barnes, Nik Belle, Kpazawala Windross, Brady Gin
Teaching Assistant: Hunter Larson
Faculty: Yogananda Isukapalli
Company Sponsor: Angstrom Designs
University of California, Santa Barbara

1 ABSTRACT

Powering satellites efficiently is essential for the success of long-term space missions. To
advance solar cell technology, it is necessary to evaluate performance under real orbital
conditions. GauchoSat is a student-built 1U CubeSat developed as a UC Santa Barbara
computer engineering capstone project for Angstrom Designs to address this need by col-
lecting and transmitting IV curve data from space. It features a compact payload known as
the Aerospace Measurement Unit (AMU), which captures real-time current, voltage, tem-
perature, and sun angle data of solar cells during orbit. This information is downlinked
using a custom UHF communication protocol, enabling analysis of solar cell efficiency in ac-
tual space environments. GauchoSat demonstrates a low-cost, modular approach to deploy-
ing space-based testing platforms, accelerating the development of next-generation satellite
power systems.

2 INTRODUCTION

Motivation: Angstrom Designs specializes in testing advanced solar cells for space appli-
cations. While their ground-based laboratory testing is highly controlled and precise, it
lacks the environmental realism of true orbital conditions. To close this gap, Angstrom en-
listed our team to explore ways to evaluate their customers’ solar technology performance
in space, particularly under the varying temperatures, radiation exposure, and light condi-
tions of low-Earth orbit. Our goal was to develop a system capable of gathering detailed
IV (current-voltage) curves from orbit using Aerospace Measurement Units (AMUs). These
compact, high-precision instruments allow for accurate monitoring of solar cell performance,
enabling data-driven improvements to space power systems.

CubeSat Initiative: CubeSats have become increasingly popular to “Democratize Space”,
to provide universities, startups, and research teams with affordable and manageable satellite
development opportunities. Building a nanosatellite is the most practical and cost-effective
way to measure solar cell performance in space. CubeSats, small satellites typically mea-
suring 10 cm per side and weighing 1 kg, provide a highly approachable entry point to



Figure 1: Space-ready GauchoSat pictured with two side panels removed to showcase the controller
board.

spaceflight for universities, startups, and research teams. Despite their small size, CubeSats
can be configured with a complete set of spacecraft subsystems, including a flight computer,
communication system, attitude determination and control system (ADCS), power system,
and mission-specific payload. CubeSat missions typically require up to two years of devel-
opment to accommodate system integration, testing, and launch readiness.

GauchoSat: GauchoSat is our team’s 1U CubeSat designed to evaluate solar cell per-
formance in orbit on behalf of Angstrom Designs. Our team was challenged to complete
GauchoSat on a condensed nine-month timeline, demanding an accelerated and highly co-
ordinated engineering effort. The satellite includes a flight computer running a QP-nano
state machine for mission control, a UHF radio using a custom message protocol for data
transmission, and Angstrom’s AMU as the payload for IV curve collection. Supporting sub-
systems include a power system with solar panels and batteries, and a telemetry monitoring
system. Our design focuses on modularity, robustness, and low power consumption, with
software and hardware optimized for the limited bandwidth and tight energy budget typical
of CubeSat missions. GauchoSat’s streamlined architecture makes it an effective platform
for in-orbit solar testing, while remaining adaptable for future research needs.

3 FLIGHT PLAN

Timeline: The GauchoSat mission follows a tightly scheduled 35-day flight plan, determined
by the satellite’s low-Earth orbit decay window before reentering and burning up in Earth’s
atmosphere. The flight is divided into four key phases:

o Launch: GauchoSat is deployed into orbit by a commercial launch provider. This marks
the beginning of onboard operations, as the satellite begins passive power generation and
waits for ground command verification.

o Initialization (35 hours): Upon deployment, the flight computer enters an initializa-
tion state, fully charging onboard batteries and sequentially testing each subsystem to
ensure operational readiness in the space environment.



o Detumble (4 hours): A brief detumbling phase attempts to reduce the satellite’s rota-
tion after launch using passive or software-based techniques. This is critical to stabilize
the orientation and ensure consistent radio communication and accurate payload mea-
surements.

« Science (32 days): In the main mission phase, GauchoSat enters a repeating loop of
collecting IV curves and telemetry data, storing it onboard, charging, and periodically
downlinking packets to the ground station. This cycle continues for the remaining 32
days of the satellite’s lifetime.

This streamlined plan is designed to maximize useful data collection within the short orbital
window, while accounting for power, memory, and communication limitations.

Constraints: To achieve this flight plan within the confines of a 1U CubeSat, every design
decision had to account for tight constraints on power, memory, mass, and volume. With
only a small solar panel surface area and limited battery storage, the flight software flow
had to be optimized for low power consumption, implementing careful duty cycling and
low-power modes wherever possible.

Similarly, firmware had to be written with minimal RAM and flash usage, given the limited
memory available on the onboard microcontroller. Achieving robust mission functional-
ity within these constraints required close coordination between hardware choices, software
scheduling, and firmware architecture.

4 HARDWARE

GauchoSat: We found that the hardest part of building a CubeSat was determining where
to start, because there is no single solution that meets every mission’s requirements. We
began with a power budget based on the expected demands of our payload, the Aerospace
Measurement Unit (AMU). Beyond the current draw, size, and weight of our payload, we
had to consider the pointing ability required for the AMUs to gather meaningful data.

This meant we had to account for integrating a robust attitude determination and control
system (ADCS), responsible for detumbling the CubeSat—slowing its spin post-deployment
to enable proper radio communication—and orienting the test solar cells toward the sun
for accurate measurements. While initial research and design considerations for the ADCS
were conducted, developing and integrating a full ADCS was outside the scope of our nine-
month project timeline. This component will be further developed by Angstrom using the
foundational research our team initiated.

From there, we worked backward to identify hardware that could meet our mission’s needs
while fitting within our size, cost, and timeline constraints. After consulting professors, other
universities, and industry experts, it became clear that we had three main options:

o Build individual components from scratch: Affordable but risky due to our inability
to test if our hardware would survive the physical degradation caused by space.

« Use commercial off-the-shelf (COTS) space-rated parts: Reliable, but expensive



Controller Board Power Board

® o ©
Payload Solar Cell

Figure 2: Flat Sat with the Controller Board (left), and the Power Board (right).

and difficult to integrate within our strict weight, power, memory, and storage constraints.

o Purchase a full CubeSat kit: Expensive up front, but already optimized for integra-
tion of our payload and firmware within the constraints mentioned above.

We ultimately selected the Interorbital Systems 1U CubeSat kit, which provided a chassis,
solar panels, power management hardware, radio, telemetry interfaces, and a PCB with
an integrated flight computer. This platform was not only cost-effective relative to other
space-rated kits and COTS components, but also fully compatible with our payload.

Choosing Interorbital allowed us to eliminate the risk of hardware failure due to our inability
to accurately simulate the physical conditions of space. Additionally, it shifted our focus to
physically integrating our payload into the CubeSat, developing reliable firmware to meet
our mission needs, and creating a testing environment to ensure success within our timeline.

By delivering a tested, launch-ready system, GauchoSat ensures that Angstrom has a reliable
vehicle to validate AMU performance in orbit without requiring deep spacecraft hardware
expertise.

FlatSat: In parallel with the product-level flight hardware assembly and testing, we built a
FlatSat. In other words, a ground-based replica of the GauchoSat, to support both develop-
ment and future mission replication. FlatSats are widely used in the aerospace community
as a way to prototype and debug CubeSat functionality outside of the space environment.
Ours was constructed on a breadboard using Adafruit versions of each subsystem component,
allowing us to mimic flight software behavior and validate data flow between the microcon-
troller and all peripherals. The FlatSat not only enabled rapid testing during development,
but also provides Angstrom with a replicable blueprint for building and validating future
CubeSats from the ground-up. If issues arise during flight, the FlatSat also serves as a valu-
able debugging tool for reproducing behavior on the ground and testing firmware updates in
a controlled environment.

Controller Board: The controller board serves as the central processing hub of the Gau-
choSat, managing peripherals, executing the state machine, collecting payload data, and

4



Figure 3: Aerospace Measurement Unit (left) and Solar Cell (right).

handling radio communications. The key components are below:

ATMEGA32U4 (Flight Computer): Chosen for its simplicity in programming and
development, this microcontroller enabled rapid initial software deployment. However, it
revealed limitations in processing speed, memory, and flash capacity, prompting consid-
eration of a more powerful processor in future iterations.

Radio Transceiver: Integrated on the radio board and connected via SPI, the transceiver
was selected after extensive research into alternatives such as the Iridium Satellite Net-

work and various frequency bands (L-Band, S-Band, Ka-Band). It offered ease of inte-

gration, affordability, and compatibility with existing Amsat ground station networks for

transmitting custom 32-byte packets. Further details are provided in the Ground Station

section.

Dipole Antenna: The dipole antenna enables the CubeSat to transmit messages to
Earth regardless of orientation. It is constructed by cutting measuring tape into two
equal lengths to match the 434 MHz wavelength.

Aerospace Measurement Units (AMUSs): Developed by Aerospace Corporation and
integrated by Angstrom Designs, these units interface via I12C to evaluate solar panel
performance. The AMUs measure current-voltage (IV) characteristics, sun angle, and
temperature, providing key metrics such as maximum power output—critical for solar
cell efficiency assessment.

RTC with Coin Cell Battery: This real-time clock module ensures accurate time-
keeping even when the controller board is powered down, allowing for precise mission
timestamping.

9 DOF IMU: This Inertial Measurement Unit integrates an accelerometer, gyroscope,
magnetometer, and temperature sensor to determine CubeSat orientation and axis posi-
tioning, supporting attitude determination and control.

Temperature Sensor: A highly sensitive sensor used for monitoring the CubeSat’s
internal temperature in degrees Celsius, essential for thermal regulation and safety.

8 MB FRAM: Used to store peripheral data directly, this FRAM module reduces flash
and RAM usage on the flight computer. It retains data even during low-power charging
states and is connected via SPI.

GPIO Expander: This component increases the number of available general-purpose
input/output (GPIO) pins, enabling connection to multiple peripherals—especially the



radio—while conserving resources on the main flight controller.

Power Board: The Power Board is responsible for power monitoring, distribution, protec-
tion, and regulation across the GauchoSat system. It interfaces directly with the battery,
solar panels, and system loads, while also relaying critical telemetry to the controller board.
Below are the key components and their functions:

ATMEGA32U4 (Power MCU): The ATmega32U4 on the power board acts as the
Power Management Microcontroller, coordinating sensors, chargers, and regulators to
ensure safe and efficient power operation. It also facilitates communication between the
power board and the flight controller.

Battery Charger: This charge management controller handles safe and efficient charg-
ing of the Li-Ion battery from solar or USB sources. It integrates full charge cycle control,
power path management, and protection features, ensuring reliable battery operation and
maximizing system uptime.

Solar Voltage Regulator: A high-efficiency, low-input-voltage boost-buck DC/DC
converter. On the power board, it plays a critical role in regulating and stabilizing
voltage from the solar panels.

Battery Monitor: This battery management IC measures battery voltage and current
through dedicated registers. It also includes protection and fault monitoring capabilities
using an integrated protection register.

Digital Potentiometer: A dual-channel 10k(2 digital potentiometer used to adjust
analog reference voltages. It controls input current from solar or USB sources by tuning
feedback signals in power management circuits, enabling programmable and efficient
current limiting.

Power Monitoring Sensors: Two modules monitor current, voltage, and power across
key power lines. Their readings provide real-time telemetry on subsystem consumption,
enabling intelligent load management.

Ground Station: The ground station is a critical component designed to communicate
with GauchoSat, providing both testing capabilities and ongoing mission support. It plays
a crucial role by enabling retrieval of payload data and facilitating the transmission and
reception of custom messages to and from the satellite. Key components include:

RTL-SDR: A versatile universal frequency receiver connected via USB and coupled
with an extendable dipole antenna. Our implementation utilized the SDR++ software on
macOS, allowing for visualization and debugging of radio signals during communication
setup.

ATMEGA32U4 (Ground Station Controller): Used consistently across both the
ground station and GauchoSat to ensure compatibility and streamline firmware devel-
opment. The microcontroller configures the radio to receive incoming messages and
forwards them to the ground station user interface. It also manages the transmission of
user-generated commands back to the CubeSat.



Figure 4: DIY Yagi Antenna for 70cm Band.

 Radio Transceiver: Identical to the FlatSat module integrated into the GauchoSat
PCB. This transceiver includes a high-pass filter and power amplifier to manage commu-
nications effectively. It transmits and receives 32-byte packets, which are encrypted and
decrypted between the ground station and CubeSat.

o« DIY Yagi Antenna: Constructed from tape measure segments, PVC pipes, and coax-
ial cable, this antenna is specifically tuned for the 434 MHz (70 cm) frequency band,
providing approximately 10 dB of gain. While suitable for initial testing, a circularly
polarized antenna and automated tracking system will be required for reliable communi-
cation during orbital operations due to the satellite’s expected tumbling.

5 SOFTWARE AND FIRMWARE

Controller Board Firmware: The GauchoSat firmware is built around a real-time finite
state machine using the QP-nano framework, chosen for its lightweight design and built-in
state management features. QP-nano abstracts away the low-level handling of state tran-
sitions, reducing the risk of deadlocks or unreachable states while enabling our CubeSat to
respond autonomously to its environment. This framework provides a clear structure for
managing mission-critical operations on a microcontroller with limited memory and process-
ing power. The state machine transitions from the launch state to the orbit state when a
mechanical switch on GauchoSat is triggered upon deployment into space. Within the orbit
state, the system cycles between two primary modes: charging and active. A timer-based
interrupt drives a periodic tick signal in the active state, where the battery level is checked
on each tick. If the battery level drops below 15%, the system transitions into charging
mode and remains there until the batteries reach full capacity. This ensures that critical
operations are always performed with sufficient power reserves. In the active state, there are
two substates: payload and radio. In the payload substate, the firmware alternates between
detumble and telemetry phases. During detumble, the satellite reduces its rotation rate to
stabilize orientation and optimize data collection. Once stabilized, the telemetry substate



Launch

1

)
)
T 1 T 1

Telemetry

Figure 5: GauchoSat Software Flow.

collects data from onboard sensors, including the IMU, temperature sensor, RT'C, and AMUs,
and stores it in FRAM. Data from each sensor is written to indexed sections of FRAM, which
allows for efficient partitioning and minimizes RAM usage by eliminating the need for large
in-memory buffers. FRAM’s non-volatile nature and acceptable access speeds made it a
strong fit for our low-throughput data needs. After telemetry collection, the system tran-
sitions into the radio substate, where it reads stored data from FRAM, constructs packets,
and transmits them using the appropriate communication strategy. Following transmission,
the satellite enters a brief receive window, typically five minutes, to listen for incoming com-
mands from the ground station. The firmware supports both production and test modes.
In production mode, the state machine operates autonomously, and telemetry data is mon-
itored via a Python-based ground interface that receives and decodes downlinked packets.
In test mode, GauchoSat enters a passive listening state, allowing regression tests to be per-
formed by sending messages and observing responses. This dual-mode system enables both
operational reliability and pre-flight debugging with minimal code divergence.

Controller Board Firmware: To facilitate robust and flexible communication, we devel-
oped a custom messaging framework that works uniformly across multiple communication
interfaces: radio, serial, and SPI. While the physical transport layer differs across these
strategies, the packet structure and message handling logic remain consistent. This mod-
ularity simplifies development and ensures that core communication features can be tested
in different environments using the same firmware. For debugging and local development,
we use serial communication, allowing us to plug the CubeSat into a computer, send com-
mands, and monitor behavior in real time. In flight, we use the radio interface for wireless
communication with the ground station. Internally, we leverage SPI to send messages from
the controller board to the power board, such as fetching power system telemetry when
requested. The messaging system is built to support asynchronous reception and handling
of messages. When the CubeSat is in receive or test mode, incoming messages are parsed



434.000.000 ¢

Figure 6: Custom Ground Station UlI.

and routed to the appropriate handler class, which executes the corresponding command.
Conversely, in production mode, the framework allows the firmware to package and trans-
mit telemetry data or status updates back to the ground station or local computer. Each
message packet follows a lightweight format:

o A header containing predefined start bytes, a message ID, and message length
« A data payload section
o A CRC16 checksum to ensure data integrity

Packets are constructed into byte streams before transmission. Upon receipt, the byte stream
is parsed, verified with the checksum, and routed based on the message ID. This consistent
structure allows messages to be easily extended, debugged, and validated across all com-
munication channels, and provides a strong foundation for both real-time telemetry and
interactive control during flight.

Power Board Firmware: The Power Board firmware manages power telemetry and com-
munication between the power subsystem and the main flight computer. It initializes and
interfaces with onboard sensors, two power monitors, a digital potentiometer, and a battery
monitor over 12C. It listens for SPI packets from the main controller, interprets sensor data
requests, and responds with real-time power readings (current, voltage, and power). The
firmware ensures autonomous power subsystem operation and supports modular telemetry
collection for both regulated power lines. The power board firmware can only be loaded on
to the GauchoSat through an ICSP programmer.

Ground Station Firmware: The firmware running on the ground station utilizes the mes-
saging protocol to communicate with the radio module over serial. Under normal operation,
the firmware places the radio in receive mode, continuously monitoring for incoming mes-
sages from GauchoSat. When a command is initiated via the ground station user interface
(UI), the firmware temporarily switches the radio into transmit mode, sending the requested
command before reverting to receive mode. This dynamic switching ensures efficient and
responsive communication with the satellite.



Ground Station User Interface: The custom Python-based ground station provides an
intuitive interface for real-time interaction with the GauchoSat. Upon startup, users can
select the connected microcontroller from available devices. The main interface displays the
satellite’s live status, reflecting telemetry data transmitted from GauchoSat. A dedicated
command interface allows users to send custom commands, enabling targeted data requests
or operational controls. Additionally, a specialized view presents Aerospace Measurement
Unit (AMU) data collected from the satellite payload. All sent and received commands are
systematically logged to a CSV file, ensuring comprehensive record-keeping for post-flight
analysis and troubleshooting. Additionally, the SDR++ software which is connected to the
RTL-SDR dongle is used to visualize the frequency transmissions over 434 MHz.

6 TESTING AND SIMULATION

Python Testing Environment: To support robust development and validation of Gau-
choSat’s firmware, we built a flexible Python-based testing environment that enables real-
time monitoring, command execution, and automated regression testing. This environment
plays a critical role in both interactive debugging during development and formal testing
prior to deployment. At the core of the testing environment are a set of Python dataclasses
each representing a major onboard subsystem, including the AMUs, telemetry sensors, ra-
dio, and power system. These classes encapsulate methods for parsing incoming messages
and extracting meaningful information from the raw data packets. When the CubeSat
transmits data, the Python environment listens over serial communication, interprets the
message based on its ID, and routes it to the corresponding dataclass for structured analy-
sis. This allows for clean data visualization, logging, and validation during both test mode
and live production monitoring. The Python interface also provides utilities for constructing
and sending custom command packets to the GauchoSat using any supported communica-
tion strategy (serial, radio, or SPI). These commands are used to trigger specific actions
onboard, such as requesting telemetry, initiating subsystem tests, or resetting the state ma-
chine. Critically, the environment supports automated regression testing, where predefined
test scripts construct packets, send them to the flight computer, and then listen for and val-
idate the responses. Assertions are made on the returned data to confirm that functionality
remains intact after changes to the firmware. This helped ensure that newly added features
did not compromise previously working subsystems, a key requirement given the tightly in-
tegrated nature of the GauchoSat software. The testing environment also integrates cleanly
with graphical Uls, making it a powerful tool not only for developers but also for mission
operators to monitor satellite health and command behavior in a more user-friendly format.

Simulations: Simulation played a critical role in developing and validating the GauchoSat’s
state machine and overall software functionality. A MATLAB CubeSat simulation tool
provided solar power generation data based on sunlight exposure, amplitude, and angle
of incidence throughout the satellite’s orbit. These power output values were fed into our
system to test whether the state machine responded correctly to real-world orbital conditions.
By simulating variations in available power, we verified that the state machine correctly
transitioned between charging and active states based on power levels, ensuring reliable
operation and preventing mission failure from power budget breaches.

10



7 CHALLENGES

The GauchoSat project presented a set of unique and rigorous challenges, primarily driven by
a drastically condensed development timeline. Typical CubeSat projects span approximately
two years; however, our team was tasked with delivering the satellite within just nine months.
This accelerated schedule required critical trade-offs and rapid decision-making. Navigating
the aerospace industry’s complexities, we quickly adapted to significant constraints, includ-
ing costly components, extended lead times, and limited availability of open-source resources.
Due to the high stakes involved, extensive preliminary research was essential to ensure accu-
rate first-time hardware selections, as opportunities for iterative testing were severely limited.
Additionally, we faced the substantial challenge of reverse-engineering and rebuilding a com-
plex satellite system, often with limited documentation and components that arrived late
into our project timeline. Each team member encountered substantial hurdles while inte-
grating subsystems such as radios, FRAM, and power management systems. Compounding
these challenges was an exceptionally condensed window for validation and integration test-
ing, far below aerospace industry standards. Lastly, embedded software development was
heavily constrained by limited memory resources of only 2.5 KB RAM and 32 KB Flash.
This necessitated highly optimized software solutions, custom lightweight communication
protocols, and efficient data storage in external FRAM modules.

8 FUTURE WORK

Future Work will focus on several key areas to enhance the satellite’s capabilities and readi-
ness for deployment. This includes purchasing or developing industry-grade ground station
tracking hardware or collaborating with amateur radio groups to ensure robust communi-
cation capabilities. Additionally, creating a payload PCB with an updated version of the
Aerospace Measurement Units (AMUs) and integrating these with test solar cells is critical.
We plan to either build or purchase an attitude determination and control system to ensure
proper orientation in orbit. Furthermore, rigorous testing procedures will be established to
verify that our software, firmware, and hardware systems meet the stringent demands of
space conditions. Finally, scheduling a CubeSat launch is essential to bring GauchoSat into
operational status and fulfill its scientific mission objectives.

9 CONCLUSION

GauchoSat represents a fully integrated, end-to-end CubeSat platform developed under an
accelerated timeline to address the challenge of evaluating solar cell performance in orbit.
Through careful system design, a modular software architecture, and custom hardware in-
tegration, our team built a functional 1U satellite capable of autonomous operation, data
collection, and communication with Farth. Despite the demanding constraints of power,
memory, and development time, we successfully demonstrated that low-cost CubeSats can
serve as powerful tools for space-based technology validation. GauchoSat not only provides
Angstrom Designs with a reliable in-orbit testbed for their Aerospace Measurement Units,
but also establishes a framework for future missions and educational satellite development.

11



